Computer software enables everything from basic functions like email and word processing, to complex programs that drive today's mobile devices. DeVry University's bachelor's degree program in Computer Engineering Technology and Engineering Technology - Computers can prepare you with the skills for writing, implementing and testing software programs that drive modern electronic devices.

As a student, you can learn programming languages, operating systems environments, microprocessor fundamentals and how to decipher user needs. You can focus on real-world problems and solutions, gaining the experience that today's employers value.

The Computer Engineering Technology and Engineering Technology - Computers degree programs are accredited by The Engineering Technology Accreditation Commission (ETAC) of ABET. Some courses may be taken interchangeably between onsite and online to fulfill graduation requirements. The most recent information on which programs are ETAC of ABET accredited at which locations is available in the Academic Catalog and at http://www.devry.edu/academics/accreditation.html.

Communication Skills
- ENGL12 Composition
- ENGL135 Advanced Composition
- ENGL216 Technical Writing
- SPCH275 Public Speaking

Humanities
- HUMN303 Introduction to the Humanities
- ETHC445 Principles of Ethics
- LAS432 Technology, Society, and Culture

Social Sciences
- ECON312 Principles of Economics
- SOCS185 Culture and Society
- SOCS325 Environmental Sociology

Mathematics, Analytical Methods and Natural Sciences
- ECET345 Signals and Systems with Lab
- MATH114 Algebra for College Students
- MATH190 Pre-Calculus
- MATH260 Applied Calculus I
- MATH270 Applied Calculus II

Natural Sciences
- PHYS204 Applied Physics with Lab

Personal and Professional Development
- CARD405 Career Development
- COLL148 Critical Thinking and Problem-Solving

Electronics Circuits and Devices
- ECET310 Electronic Circuits and Devices I with Lab
- ECET320 Electronic Circuits and Devices II with Lab
- ECET330 Electronic Circuits and Devices III with Lab
- ECET350 Signal Processing with Lab

Digital Circuits and Microprocessors
- CEIS100 Introduction to Engineering Technology and Information Sciences
- ECET305 Digital Fundamentals with Lab
- ECET330 Microprocessor Architecture with Lab
- ECET430 Microprocessor Interfacing with Lab
- ECET435 Embedded Microprocessor Systems with Lab

Computer Programming and Networking
- CEIS295 Data Structures and Algorithms
- CSCI170 Programming with Lab
- CSCI247C Object-Oriented Programming with Lab
- CSCI336 Introduction to Database with Lab
- CSCI385A Business Application Programming with Lab
- ECET360 Operating Systems with Lab
- ECET375 Data Communications and Networking with Lab
- ECET465 Advanced Networks with Lab
- ECET490 Distributed Computing System Design with Lab

Senior Project Design and Development
- ECET390 Product Development
- ECET492L Senior Project Development Lab I
- ECET493L Senior Project Development Lab II
- ECET494L Senior Project Development Lab III

Technology Integration
- ECET299 Technology Integration I
- ECET497 Technology Integration II

ACCREDITATION MATTERS

The Computer Engineering Technology and Engineering Technology - Computers degree programs are accredited, by location, by The Engineering Technology Accreditation Commission of ABET (ETAC of ABET) www.abet.org. ETAC of ABET promotes technical education excellence by offering programmatic accreditation to Institutions that meet their quality standards. This is a global mark of quality that is valued by employers and professional associations within the field Engineering Technology. To learn more visit www.abet.org.

Programs, course requirements and availability vary by location. Some courses may be available online only. All students enrolled in site-based programs will be required to take some coursework online and, for some programs and locations, a substantial portion of the program may be required to be completed online. DeVry's academic catalog, available via devry.edu/catalogs, contains the most current and detailed program information, including admission, progression and graduation requirements. Information contained herein is effective as of date of publishing.
CAREERS IN COMPUTER ENGINEERING TECHNOLOGY AND ENGINEERING TECHNOLOGY - COMPUTERS

The field of engineering technology has changed the way we live, play and work. It's difficult to imagine our world without cell phones, electronic gaming and the Internet.

DeVry University’s Computer Engineering Technology and Engineering Technology - Computers degree programs provides students a broad range of applicable coursework, including programming, microprocessors, operating systems, product development, database system design and technology integration.

Graduates of DeVry University’s Computer Engineering Technology and Engineering Technology - Computers programs may consider careers including, but not limited to, the following:

- Application Engineer
- Computer Automated Teller and Office Machine Technician
- Computer Support Specialist
- Customer Service Engineer
- Electrical Engineering Technician
- Electronics Technician
- Electronics Engineering Technician
- Engineering Specialist
- Engineering Technician
- Field Service Technician
- Manufacturing Technician
- Sales Engineer
- Test Engineer
- Application Engineer
- Computer Automated Teller and Office Machine Technician
- Computer Support Specialist
- Customer Service Engineer
- Electrical Engineering Technician
- Electronics Technician
- Electronics Engineering Technician
- Engineering Specialist
- Engineering Technician
- Field Service Technician
- Manufacturing Technician
- Sales Engineer
- Test Engineer

For comprehensive consumer information, visit devry.edu/studentconsumerinfo. Important information about the education debt, earnings and completion rates of students who attended this program can be found at devry.edu/bcet-ge.

For additional program information, visit devry.edu/bcet.

DeVry University is accredited by The Higher Learning Commission (HLC), www.hlccommission.org. DeVry is certified to operate by the State Council of Higher Education for Virginia. DeVry University is authorized for operation by the THEC. www.tn.gov/thec Nashville Campus - 3343 Perimeter Hill Dr., Nashville, TN 37211. To report unresolved complaints to the Illinois Board of Higher Education, visit their webpage at http://complaints.ibhe.org/ or by mail to the Illinois Board of Higher Education, 1 N. Old State Capitol Plaza, Suite 333, Springfield, IL 62701-1377. Program availability varies by location. ©2018 DeVry Educational Development Corp. All rights reserved. Version 08/26/18

MICROPROCESSOR ARCHITECTURE — Explore the internal architecture of the microprocessor, the basic building block of current electronic systems. Use assembly language and/or high-level language to program the microprocessor and develop simple algorithms.

DATA COMMUNICATIONS AND NETWORKING — Learn principles of data communications, including noise effects, multiplexing and transmission methods, as well as the protocols, architecture and performance analysis of local and wide area networks.

OPERATING SYSTEMS — Explore basic operating system concepts such as process states and synchronization, multiprocessing, multiprogramming, processor scheduling, virtual memory, logical and physical input/output, device allocation and file management.

DATABASE FUNDAMENTALS — Concepts and methods fundamental to database development are developed including data analysis and modeling, as well as structured query language (SQL). Explore basic functions and features of a database management system (DBMS), with emphasis on the relational model.

BUSINESS APPLICATION PROGRAMMING — Programming and database skills to develop programs that support typical business processing activities and needs such as transaction processing and report generation. Business-oriented programs are developed that deal with error handling, data validation and file handling. Java is the primary programming language used.

COMPUTERS AND ELECTRONICS — Understand circuit boards, processors, chips, electronic equipment and computer hardware and software, including applications and programming.

QUALITY CONTROL ANALYSIS — Conduct tests and inspections of products, services or processes to evaluate quality or performance.

COMPLEX PROBLEM SOLVING — Identify complex problems and review related information to develop and evaluate options and implement solutions.

MATHEMATICS — Understand and apply arithmetic, algebra, geometry, calculus and statistics.