Biomedical engineering technologists install, improve, develop, adjust, repair and maintain devices and systems that diagnose and treat injuries and illnesses. These devices and systems include equipment, such as CAT scanners, MRI machines, patient monitoring devices, prosthetics, surgical devices and medical information systems.

As a student, you can study human anatomy and physiology, and combine these disciplines with engineering principles and practices. Our curriculum introduces you to quality assurance testing and troubleshooting of common equipment used in today’s leading hospitals and surgery centers. You can focus on real-world problems and solutions.

The Biomedical Engineering Technology degree program is accredited by The Engineering Technology Accreditation Commission (ETAC) of the Accreditation Board for Engineering and Technology (ABET). Some courses may be taken interchangeably between onsite and online to fulfill graduation requirements. The most recent information on which programs are ETAC of ABET accredited at which locations is available in the Academic Catalog and at http://www.devry.edu/academics/ accreditation.html.

Programs, course requirements and availability vary by location. Some courses may be available online only. All students enrolled in site-based programs will be required to take some coursework online and, for some programs and locations, a substantial portion of the program may be required to be completed online. DeVry’s academic catalog, available via devry.edu/catalog, contains the most current and detailed program information, including admission, progression and graduation requirements. Information contained herein is effective as of date of publishing.

ABOUT THIS DEGREE PROGRAM

Biomedical engineering technologists install, improve, develop, adjust, repair and maintain devices and systems that diagnose and treat injuries and illnesses. These devices and systems include equipment, such as CAT scanners, MRI machines, patient monitoring devices, prosthetics, surgical devices and medical information systems.

As a student, you can study human anatomy and physiology, and combine these disciplines with engineering principles and practices. Our curriculum introduces you to quality assurance testing and troubleshooting of common equipment used in today’s leading hospitals and surgery centers. You can focus on real-world problems and solutions.

The Biomedical Engineering Technology degree program is accredited by The Engineering Technology Accreditation Commission (ETAC) of the Accreditation Board for Engineering and Technology (ABET). Some courses may be taken interchangeably between onsite and online to fulfill graduation requirements. The most recent information on which programs are ETAC of ABET accredited at which locations is available in the Academic Catalog and at http://www.devry.edu/academics/ accreditation.html.

GENERAL EDUCATION COURSEWORK¹

| Communication Skills | ENGL112 ♠ Composition
| ENGL135 Advanced Composition
| ENGL216 Technical Writing
| SPCR275 Public Speaking |
| Humanities | HUMN303 Introduction to the Humanities
| ETIC445 Principles of Ethics
| LAS432 Technology, Society, and Culture |
| Social Sciences | ECON312 Principles of Economics
| SOCS185 Culture and Society |
| Mathematics and Analytical Methods | ECET344 Signals and Systems with Lab
| MATH190 Precalculus
| MATH260 Applied Calculus I
| MATH270 Applied Calculus II |
| Natural Sciences | BIOS135 Foundations in Biology and Chemistry with Lab
| BIOS195 Anatomy and Physiology for Health Sciences with Lab
| PHYS210 College Physics I with Lab
| PHYS220 College Physics II with Lab |
| Personal and Professional Development | CARD405 Career Development
| COLL448 Critical Thinking and Problem-Solving |

¹Most courses with the designator ECET may not be applied to this program if the courses are taken online.

²Students enrolled at a New Jersey location take ENGL108 in lieu of this course.

CORE-DEGREE COURSEWORK

| Electronic Circuits and Devices | CEIS100 Introduction to Engineering Technology and Information Sciences
| ECET105 Digital Fundamentals with Lab
| ECET110 Electronic Circuits and Devices I with Lab
| ECET210 Electronic Circuits and Devices II with Lab
| ECET220 Electronic Circuits and Devices III with Lab
| ECET380 Signal Processing with Lab |
| Digital Circuits and Microprocessors | ECET230 Digital Circuits and Systems with Lab
| ECET330 Microprocessor Architecture with Lab
| ECET340 Microprocessor Interfacing with Lab |
| Computer Programming and Networking | CISI70C Programming with Lab
| CISI95C Object-Oriented Programming with Lab
| CISI85A Business Application Programming with Lab
| ECET135 Data Communications and Networking with Lab
| NETW310 Wired, Optical and Wireless Communications with Lab |

ACCREDITATION MATTERS

The Biomedical Engineering Technology (BMET) degree program is accredited by location, by The Engineering Technology Accreditation Commission of ABET (ETAC of ABET) www.abet.org. ETAC of ABET promotes technical education excellence by offering programmatic accreditation to institutions that meet their quality standards. This is a global mark of quality that is valued by employers and professional associations within the field of Engineering Technology. To learn more visit www.abet.org.
Bachelor's Degree Program
Biomedical Engineering Technology

CAREERS IN ELECTRONICS & COMPUTER TECHNOLOGY

The biomedical engineering industry is experiencing exciting progress. The prospects for improving human health and extending human lifespan offer students many opportunities in the workplace today.

DeVry University's Biomedical Engineering Technology degree program can provide students a broad range of applicable coursework, including medical devices, biomedical instrumentation systems, computer techniques in medical imaging systems, and telemedicine and biomedical networking.

Graduates of DeVry University's Biomedical Engineering Technology degree program may consider careers including, but not limited to, the following:

- Applications Engineer
- Biomedical Equipment Technician
- Biomedical Sales Engineer
- Computer Automated Teller and Office Machine Technician
- Computer Support Specialist
- Customer Service Engineer
- Electronics Technician
- Energy Technical Project Manager
- Engineering Technician
- Field Service Technician
- Image Processing and Archiving
- Manufacturing Technician
- Medical Equipment Repairer
- Sales Engineer
- Test Engineer/Technologist

For comprehensive consumer information, visit devry.edu/studentconsumerinfo. Important information about the education debt, earnings and completion rates of students who attended this program can be found at devry.edu/bbet-ge. For additional program information, visit devry.edu/bbet.

In New York, DeVry University operates as DeVry College of New York.

DeVry University is accredited by the Higher Learning Commission (HLC), www.hlcommission.org. DeVry is certified to operate by the State Council of Higher Education for Virginia, www.schev.org, and is authorized to operate by theTHEC. www.tn.gov/thec. To report unresolved complaints to the Illinois Board of Higher Education, visit their webpage at http://complaints.ibhe.org/ or by mail to the Illinois Board of Higher Education, 1 N. Old State Capitol Plaza, Suite 333, Springfield, IL 62701-1377. Program availability varies by location. ©2016 DeVry Educational Development Corp. All rights reserved. Version 08/14/17

KNOWLEDGE AND SKILLS

- BIOENGINEERING TECHNOLOGY — Analyze biological and biomedical problems using fundamental concepts and tools, including electrodes, biopotential measurements, electrocardiogram equipment, pacemakers, defibrillators and ultrasonics. Apply engineering principles to acquire, monitor and analyze biological signals.
- BIOMEDICAL INSTRUMENTATION SYSTEMS — Study the principles of medical instrumentation, including diagnostics and techniques for measuring physiological variables in living systems. Understand product liability and safety issues.
- COMPUTER TECHNIQUES IN MEDICAL IMAGING — Use computer tools to design and implement data and image acquisition and analysis in biomedical environments. Understand the physics of producing images in applications such as X-ray, computerized tomography (CT), magnetic resonance imaging (MRI) and ultrasonic imaging.
- MICROPROCESSOR INTERFACING — Learn how microprocessors interface with peripheral devices, including A/Ds, D/As, keyboards, displays, and serial and parallel communication channels. Develop software (high-level and assembly) and hardware aspects of these devices.
- PHYSICS — Predict and apply physical principles and laws to fluid, material and atmospheric dynamics, as well as mechanical, electrical, atomic and sub-atomic structures and processes.
- BIOLOGY — Understand plant and animal organisms along with their tissues, cells, functions, interdependencies and interactions with each other and the environment.
- MATHEMATICS — Understand and apply arithmetic, algebra, geometry, calculus and statistics.
- COMPLEX PROBLEM SOLVING — Identify complex problems and review related information to develop and evaluate options and implement solutions.