Electronics are the core of everything from personal communication devices to sophisticated medical equipment, to the cars and trucks we drive. The Engineering Technology – Electronics (ET-E) degree program at DeVry University can prepare you with the skills needed for designing, building and improving tomorrow’s electronic products and systems. DeVry University has a long history of preparing individuals to work in the electronics industry.

As a student, you can work with the latest technologies and designs, plus test new ones, providing you with real-world insight. You can learn key troubleshooting skills and become immersed in today’s engineering hardware and software technologies. You can also learn how to lead and/or be a part of a technical team.

In addition, students may take the Engineering Technology – Electronics degree program without a specialization.

The Engineering Technology – Electronics degree program is accredited by The Engineering Technology Accreditation Commission (ETAC) of the Accreditation Board for Engineering and Technology (ABET). Some courses may be taken interchangeably between onsite and online to fulfill graduation requirements. The most recent information on which programs are ETAC of ABET accredited at which location, by The Engineering Technology Accreditation Commission (ETAC) of ABET

The Engineering Technology – Electronics (ET-E) degree program is accredited by ABET and meets the rigorous, high-quality standards of the Accreditation Board for Engineering and Technology. To learn more visit http://www.devry.edu/academics/accreditation.html.

Courses in blue are part of the DeVry Tech Path

GENERAL EDUCATION COURSEWORK

Communication Skills
- ENGL112 Composition
- ENGL135 Advanced Composition
- ENGL216 Technical Writing
- SPC1275 Public Speaking

Humanities
- HUMN303 Introduction to the Humanities
- ETHC445 Principles of Ethics
- LAS432 Technology, Society and Culture

Social Sciences
- ECNC440 Environmental Economics
- SOCS325 Environmental Sociology

Mathematics and Analytical Methods
- ECET345 Signals and Systems with Lab
- MATH190 Pre-Calculus
- MATH260 Introduction to Linear Algebra
- MATH270 Calculus II

Natural Sciences
- BIOS133 Foundations in Biology and Chemistry with Lab
- PHYS110 College Physics I with Lab
- PHYS120 College Physics II with Lab
- SCI1204 Environmental Science with Lab

Personal and Professional Development
- CARD405 Career Development
- COLL148 Critical Thinking and Problem-Solving

CORE-DEGREE COURSEWORK

Electronic Circuits and Devices
- ECET110 Electronic Circuits and Devices I with Lab
- ECET210 Electronic Circuits and Devices II with Lab
- ECET220 Electronic Circuits and Devices III with Lab
- ECET350 Signal Processing with Lab

Digital Circuits and Microprocessors
- CEIS100 Introduction to Engineering Technology and Information Sciences
- ECET105 Digital Fundamentals with Lab
- ECET210 Digital Circuits and Systems with Lab
- ECET300 Microprocessor Architecture with Lab
- ECET340 Microprocessor Interfacing with Lab

Computer Programming and Networking
- CIS170C Introduction to Programming with Lab
- CIS210C Object-Oriented Programming with Lab
- CIS324L Business Application Programming with Lab
- ECET375 Data Communications and Networking with Lab

ACCREDITATION MATTERS

The Engineering Technology – Electronics (ET-E) degree program is accredited, by location, by The Engineering Technology Accreditation Commission of ABET (ETAC of ABET) promotes technical education excellence by offering programmatic accreditation to Institutions that meet their quality standards. This is a global mark of quality that is valued by employers and professional associations within the field. To learn more visit www.abet.org.
DeVry University’s Renewable Energy specialization provides a strong engineering technology and electronics background with an emphasis on green technologies, such as wind, solar, geothermal and biomass power. As a graduate, you can be well-versed in alternative energy generation, as well as the impact of environmental science, economics and sociology on green technology.

You can also obtain the knowledge needed to understand how engineering design, planning and project management can utilize renewable sources of energy, along with the production, transmission and storage of sustainable energy sources. Our specialization in Renewable Energy can prepare you for Engineering Technology positions that are increasingly being affected by green technologies and initiatives.

Graduates of DeVry University’s Engineering Technology – Electronics degree program with a specialization in Renewable Energy may consider careers including, but not limited to, the following:

- Electronics Technician
- Energy Engineering Technician
- Technical Project Manager
- Test Engineers and Technologists

SPECIALIZATION: RENEWABLE ENERGY

CONSERVATION PRINCIPLES IN ENGINEERING AND TECHNOLOGY — Examine conservation laws of mass, energy, charge and momentum, and apply fundamental engineering concepts to problems in electrical circuits.

FUNDAMENTALS OF POWER AND ALTERNATIVE ENERGY SOURCES — Explore power switching circuits, including simulation and construction of systems needed to convert power derived from both conventional systems and alternative energy sources such as solar and wind.

ENVIRONMENTAL SCIENCE AND SOCIAL STUDY — Learn to identify causes of environmental problems and apply practical solutions. This includes exploring cultural norms, ideologies, beliefs, and economic and gender-related factors that affect finding and providing sustainable solutions to environmental problems.

SCIENCE, TECHNOLOGY AND MANAGEMENT — Learn the science and technology behind renewable energy while considering business decisions required for investing in and managing systems using this technology. Explore renewable energies including solar technologies, fuels synthesized from biomass, hydrogen, wind and others.

ENGINEERING AND TECHNOLOGY — Gain knowledge of the practical application of engineering science and technology. This includes applying principles, techniques, procedures and equipment to the design and production of various goods and services.

COMPUTERS AND ELECTRONICS — Learn about circuit boards, processors, chips, electronic equipment and computer hardware and software, including applications and programming.

MAINTENANCE AND REPAIR — Service, repair, calibrate, regulate, fine-tune or test machines, devices, and equipment that operate primarily on the basis of electrical or electronic (not mechanical) principles.

ANALYZE DATA OR INFORMATION — Identify the underlying principles, reasons or facts and break down information or data into separate parts.

DESIGN — Understand the use of design techniques, tools and principles involved in the production of electronic equipment, schematics, drawings and models.

COMPLEX PROBLEM SOLVING — Identify complex problems and review related information to develop and evaluate options and implement solutions.

Visit DeVry.edu or call 888.DEVRY.04