Bachelor's Degree Program
ENGINEERING TECHNOLOGY – ELECTRONICS

General Education Coursework

Communication Skills
ENGL112 Composition
ENGL115 Advanced Composition
ENGL216 Technical Writing
SPCH275 Public Speaking Humanities

Humanities
HUMN303 Introduction to the Humanities
ETHC445 Principles of Ethics
LAS432 Technology, Society, and Culture

Social Sciences
ECON312 Principles of Economics
SOC3185 Culture and Society
SOC3235 Environmental Sociology

Mathematics and Analytical Methods
ECET345 Signals and Systems with Lab
MATH190 Pre-Calculus
MATH260 Applied Calculus I
MATH270 Applied Calculus II

Natural Sciences
PHYS310 College Physics I with Lab
PHYS320 College Physics II with Lab

Personal and Professional Development
CARD405 Career Development
COLL348 Critical Thinking and Problem-Solving

Core-Degree Coursework

Electronic Circuits and Devices
ECET110 Electronic Circuits and Devices I with Lab
ECET210 Electronic Circuits and Devices II with Lab
ECET220 Electronic Circuits and Devices III with Lab
ECET350 Signal Processing with Lab

Digital Circuits and Microprocessors
CEIS100 Introduction to Engineering Technology and Information Sciences
ECET108 Digital Fundamentals with Lab
ECET230 Digital Circuits and Systems with Lab
ECET330 Microprocessor Architecture with Lab
ECET340 Microprocessor Interfacing with Lab

Computer Programming and Networking
CIS170C Programming with Lab
CIS247C Object-Oriented Programming with Lab
CIS385A Business Application Programming with Lab
ECET375 Data Communications and Networking with Lab

Senior Project Design and Development
ECET390 Product Development
ECET492L Senior Project Development Lab I
ECET493L Senior Project Development Lab II
ECET494L Senior Project Development Lab III

Technology Integration
ECET299 Technology Integration I
ECET497 Technology Integration II

About This Degree Program

Electronics are the core of everything from personal communication devices to sophisticated medical equipment, to the cars and trucks we drive. The Engineering Technology – Electronics (ET-E) degree program at DeVry University can prepare you with the skills needed for designing, building and improving tomorrow's electronic products and systems. DeVry University has a long history of preparing individuals to work in the electronics industry.

As a student, you can work with the latest technologies and designs, plus test new ones, providing you with real-world insight. You can learn key troubleshooting skills and become immersed in today's engineering hardware and software technologies. You can also learn how to lead and/or be a part of a technical team.

In addition, Engineering Technology – Electronics students can specialize in the area of Renewable Energy.

The Engineering Technology – Electronics degree program is accredited by The Engineering Technology Accreditation Commission (ETAC) of the Accreditation Board for Engineering and Technology (ABET). Some courses may be taken interchangeably between onsite and online to fulfill graduation requirements. The most recent information on which programs are ETAC of ABET accredited at which locations is available in the Academic Catalog and at http://www.devry.edu/academics/accreditation.html.

Through our TechPath approach, we’ve put technology at the core of our programs in business, tech and health — including this program. Every TechPath class you take revolves around a unique learning rubric developed at DeVry. We call it People-Process-Data-Devices or P2D2. You’ll gain real skills in collaboration, be able to adapt to new structures, and be comfortable working with data and a wide spectrum of tech-forward tools. P2D2 is a key component of what makes TechPath a smart, new way of getting the knowledge you need to be ready to hit the ground running in the way successful companies work today.

Approved and Accredited
The Engineering Technology – Electronics (ET-E) degree program is accredited, by location, by The Engineering Technology Accreditation Commission of ABET (ETAC of ABET) www.abet.org. ETAC of ABET promotes technical education excellence by offering programmatic accreditation to institutions that meet their quality standards. This is a global mark of quality that is valued by employers and professional associations within the field Engineering Technology. To learn more visit www.abet.org.

Programs, course requirements and availability vary by location. Some courses may be available online only. All students enrolled in site-based programs will be required to take some coursework online and, for some programs and locations, a substantial portion of the program may be required to be completed online. DeVry’s academic catalog, available via devry.edu/catalogs, contains the most current and detailed program information, including admission, progression and graduation requirements. Information contained herein is effective as of date of publishing.
CAREERS IN ELECTRONICS ENGINEERING TECHNOLOGY

Electronics engineers are sought after in many different industries — from consumer product design, to medical device manufacturing to communications. Your ability to design and develop these solutions can make you a valuable asset to any team.

DeVry University’s Engineering Technology – Electronics degree program focuses on advanced skill development, using the most current tools and techniques. You can also build on the written and verbal communication skills that will help you to lead teams of engineers to solve 21st century business and electronics challenges.

Graduates of DeVry University’s Engineering Technology – Electronics degree program may consider careers including, but not limited to, the following:

- Application Engineer
- Computer Systems Analyst
- Customer Service Engineer
- Electrical Engineering Technician
- Electronics Technician
- Electronics Engineering Technician
- Engineering Technician
- Field Service Engineer
- Integration Engineer
- Manufacturing Technician
- Sales Engineer
- Test Engineer/Technologist

For comprehensive consumer information, visit devry.edu/studentconsumerinfo. Important information about the education debt, earnings and completion rates of students who attended this program can be found at devry.edu/beet-ge.

For additional program information, visit devry.edu/debt.

In New York, DeVry University operates as DeVry College of New York.

DeVry University is authorized for operation by the THEC. www.tn.gov/thec. Nashville Campus – 3343 Perimeter Hill Dr., Nashville, TN 37211. To report unresolved complaints to the Illinois Board of Higher Education, visit their webpage at http://complaints.ibhe.org/ or by mail to the Illinois Board of Higher Education, 1 N. Old State Capitol Plaza, Suite 333, Springfield, IL 62701-1377. Program availability varies by location. ©2016 DeVry Educational Development Corp. All rights reserved. Version 08/14/17

KNOWLEDGE AND SKILLS

ENGINEERING AND TECHNOLOGY — Use knowledge of the practical application of engineering science and technology. This includes applying principles, techniques, procedures and equipment to the design and production of various goods and services.

COMPUTERS AND ELECTRONICS — Gain knowledge of circuit boards, processors, chips, electronic equipment and computer hardware and software, including applications and programming.

CONTROLS AND MECHATRONICS — Learn the electronic control of mechanical systems, covering sensors and transducers, signal conditioning, actuators, controllers, system models, system transfer functions and dynamic system response.

SIGNAL PROCESSING — Explore analog signal processing (ASP) and digital signal processing (DSP), with emphasis on DSP, and program ASP and DSP chips for applications in communications, control systems, digital audio processing and digital image processing.

MAINTENANCE AND REPAIR — Service, repair, calibrate, regulate, fine-tune or test machines, devices and equipment that operate primarily on the basis of electrical or electronic (not mechanical) principles.

COMMUNICATIONS AND NETWORKING — Examine principles of data communications, including noise effects, multiplexing and transmission methods. Apply protocols, architecture and performance analysis of local and wide area networks.

ANALYZING DATA OR INFORMATION — Identify the underlying principles, reasons or facts by breaking down information or data into separate parts.

DESIGN — Understand the use of design techniques, tools, and principles involved in the production on electronic equipment, schematics, drawings and models.

COMPLEX PROBLEM SOLVING — Identify complex problems and review related information to develop and evaluate options and implement solutions.

PROGRAM-SPECIFIC COURSEWORK

ECET310 Communications Systems with Lab
ECET365 Embedded Microprocessor Systems with Lab
ECET405 Advanced Networks with Lab
ECET402 Mechatronics with Lab
ECT284 Automation and Control Systems with Lab
REET425 Electric Machines and Power Systems with Lab